55 research outputs found

    A -1.8V to 0.9V body bias, 60 GOPS/W 4-core cluster in low-power 28nm UTBB FD-SOI technology

    Get PDF
    A 4-core cluster fabricated in low power 28nm UTBB FD-SOI conventional well technology is presented. The SoC architecture enables the processors to operate 'on-demand' on a 0.44V (1.8MHz) to 1.2V (475MHz) supply voltage wide range and -1.2V to 0.9V body bias wide range achieving the peak energy efficiency of 60 GOPS/W, (419\u3bcW, 6.4MHz) at 0.5V with 0.5V forward body bias. The proposed SoC energy efficiency is 1.4x to 3.7x greater than other low-power processors with comparable performance

    An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics

    Full text link
    Near-sensor data analytics is a promising direction for IoT endpoints, as it minimizes energy spent on communication and reduces network load - but it also poses security concerns, as valuable data is stored or sent over the network at various stages of the analytics pipeline. Using encryption to protect sensitive data at the boundary of the on-chip analytics engine is a way to address data security issues. To cope with the combined workload of analytics and encryption in a tight power envelope, we propose Fulmine, a System-on-Chip based on a tightly-coupled multi-core cluster augmented with specialized blocks for compute-intensive data processing and encryption functions, supporting software programmability for regular computing tasks. The Fulmine SoC, fabricated in 65nm technology, consumes less than 20mW on average at 0.8V achieving an efficiency of up to 70pJ/B in encryption, 50pJ/px in convolution, or up to 25MIPS/mW in software. As a strong argument for real-life flexible application of our platform, we show experimental results for three secure analytics use cases: secure autonomous aerial surveillance with a state-of-the-art deep CNN consuming 3.16pJ per equivalent RISC op; local CNN-based face detection with secured remote recognition in 5.74pJ/op; and seizure detection with encrypted data collection from EEG within 12.7pJ/op.Comment: 15 pages, 12 figures, accepted for publication to the IEEE Transactions on Circuits and Systems - I: Regular Paper

    A Lightweight Cryptographic System for Implantable Biosensors

    Get PDF
    This paper presents a lightweight cryptographic system integrated onto a multi-function implantable biosensor prototype. The resulting heterogeneous system provides a unique and fundamental capability by immediately encrypting and signing the sensor data upon its creation within the body. By providing these security services directly on the implantable sensor, a number of low-level attacks can be prevented. This design uses the recently standardized SHA-3 Keccak secure hash function implemented in an authenticated encryption mode. The security module consists of the DuplexSponge security core and the interface wrapper. The security core occupies only 1550 gate- equivalents, which is the smallest authenticated encryption core reported to date. The circuit is fabricated using 0.18 ÎĽm CMOS technology and uses a supply voltage of 1.8 V. The simulated power consumption of the complete cryptosystem with a 500 KHz clock is below 7 ÎĽW

    Bringing NoCs to 65nm

    Get PDF
    Very deep submicron process technologies are ideal application fields for NoCs, which offer a promising solution to the scalability problem. This article sheds light on the benefits and challenges of Noc-Based interconnect design in nanometer CMOS. The author present experimental results from fully working 65-NM Noc Designs and a detailed scalability analysis

    Networks on Chips: From Research to Products

    Get PDF
    Research on Networks on Chips (NoCs) has spanned over a decade and its results are now visible in some products. Thus the seminal idea of using networking technology to address the chip-level interconnect problem has been shown to be correct. Moreover, as technology scales down in geometry and chips scale up in complexity, NoCs become the essential element to achieve the desired levels of performance and quality of service while curbing power consumption levels. Design and timing closure can only be achieved by a sophisticated set of tools that address NoC synthesis, optimization and validation

    A Lightweight Cryptographic System for Implantable Biosensors

    Get PDF
    This paper presents a lightweight cryptographic system integrated onto a multi-function implantable biosensor prototype. The resulting heterogeneous system provides a unique and fundamental capability by immediately encrypting and signing the sensor data upon its creation within the body. By providing these security services directly on the implantable sensor, a number of low-level attacks can be prevented. This design uses the recently standardized SHA-3 Keccak secure hash function implemented in an authenticated encryption mode. The security module consists of the DuplexSponge security core and the interface wrapper. The security core occupies only 1550 gate- equivalents, which is the smallest authenticated encryption core reported to date. The circuit is fabricated using 0.18 ÎĽm CMOS technology and uses a supply voltage of 1.8 V. The simulated power consumption of the complete cryptosystem with a 500 KHz clock is below 7 ÎĽW

    Sub-mW Reconfigurable Interface IC for Electrochemical Sensing

    Get PDF
    The IronIC project has the aim of developing a fully implantable and remotely powered platform for the real- time monitoring of human metabolites. In this paper we present a mixed-signal interface IC for the electrochemical sensing data acquisition chain. The IC controls and reads out up to five biomolecular sensors, by receiving commands from a standard interface to conduct chronoamperometry (CA) and cyclic voltammetry (CV). Different voltage profiles are generated by using a single fully on-chip reconfigurable waveform generator, while the measured data are digitized. The IC is realized in 0.18 μm CMOS technology. Electrical measurements show that the linear readout current range is ±1650 nA with 8-bit resolution. The cyclic voltammetry of potassium ferricyanide and the chronoamperometry of hydrogen peroxide have been successfully performed with the interface. The IC consumes 0.92 mW from 1.8 V supply voltage, making it suitable for remotely powered and implantable applications

    Comparison of a Timing-Error Tolerant Scheme with a Traditional Re-transmission Mechanism for Networks on Chips

    Get PDF
    On-chip wires are becoming unreliable as the effect of various noise sources increases with technology scaling. This leads to unpredictable timing delay variations on the interconnect wires. There is a significant need to mitigate the effect of parasitics on the interconnects, while keeping performance and area overheads at a minimum. In this work, we present a timing error tolerant design methodology, T-error, that provides dynamic recovery from timing delay variations on the interconnects. We validate the functionality of the T-error methodology using cycle-accurate RTL models of a Network-on-Chip (NoC) design, that are integrated onto a multiprocessor virtual platform. Our comparisons with the state-of-the-art error recovery mechanisms show that the T-error system provides error recovery with higher performance than the existing schemes. We also present the synthesis results for the T-error scheme, which show that the scheme has negligible overhead
    • …
    corecore